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Vast amounts of life sciences data reside today
in specialized data sources, with specialized
query processing capabilities. Data from one
source often must be combined with data from
other sources to give users the information they
desire. There are database middleware systems
that extract data from multiple sources in
response to a single query. IBM’s DiscoveryLink
is one such system, targeted to applications from
the life sciences industry. DiscoveryLink provides
users with a virtual database to which they can
pose arbitrarily complex queries, even though the
actual data needed to answer the query may
originate from several different sources, and
none of those sources, by itself, is capable of
answering the query. We describe the
DiscoveryLink offering, focusing on two key
elements, the wrapper architecture and the
query optimizer, and illustrate how it can be used
to integrate the access to life sciences data from
heterogeneous data sources.

The human genome has been sequenced, but an
even greater challenge remains: to use the in-

formation created through this and other processes
to prevent and cure disease. Knowledge about genes
will help us understand how genetics influence dis-
ease development, aid researchers looking for genes
associated with particular diseases, and contribute
to the discovery of new treatments. To progress in
this quest, we must start to answer questions such
as: What proteins are encoded by the 35000 human
genes? (It is estimated that there may be as many
as one million proteins present in the body.) Under
what conditions (which cells/when) are they manu-
factured? What biological pathways do they partic-
ipate in? Which of these proteins are appropriate

targets against which to develop new therapeutics?
Finally, what molecules can be identified and opti-
mized to act as therapeutics against these targets?
As we start to answer these questions, we may be
able to find effective drugs more quickly, to design
drugs that are more selective and have fewer side
effects, and even to produce drugs that may be tai-
lored to a particular individual’s genes (pharmacog-
enomics). As one indication of the possibilities, some
analysts predict1 that the market for personalized
medicine could become as large as $800 million by
2005.

A myriad of different data sources in differing for-
mats have been set up to support different aspects
of genomics, proteomics, and the drug design pro-
cess. Some of these data sources are huge—and
growing rapidly. Celera Genomics estimates that it
has already generated 50 terabytes of genomic data.
With the automated high throughput experimental
technologies that have been developed in recent
years, it is possible to sequence 20 million DNA (de-
oxyribonucleic acid) base pairs a day. Technologies
for testing chemical compounds have improved as
well, making it possible to run high throughput as-
says at the rate of thousands a day, leading to an ex-
plosion in the size of test databases. With the prom-
ise of high throughput techniques for protein
identification, the volume of data that must be an-
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alyzed to find good candidates for drugs is only go-
ing to increase.

Not only are there vast quantities of data, but much
of the data reside in specialized data sources, with
specialized query processing capabilities. Sequence
data are often stored in flat files or in databases and
then converted to specialized formats (e.g., FASTA2)
to run particular homology search algorithms (e.g.,
BLAST3). Proprietary chemical structure data sources
used for drug design support substructure and sim-
ilarity search. Reference data are often found in on-
line databases such as MedLine.4 Assay data are fre-
quently stored in relational format (e.g.,
ActivityBase5), and different companies get infor-
mation on patents or reports from a variety of text
retrieval systems supporting content search of dif-
fering degrees of sophistication. These various tech-
nologies provide efficient means of finding partic-
ular pieces of data of a specific type.

But extracting the data from these specialized stores
solves only part of the problem. To obtain real value
from these data, they must be combined with data
from other sources to give researchers the informa-
tion they desire. Only by integrating the data from
many sources will scientists be able to identify cor-
relations across the spectrum from genomics to pro-
teomics to drug design. The variety of different for-
mats and search algorithms, while making it possible
to optimize the access to a particular kind of data,
unfortunately makes it difficult to integrate data of
different types, or even to integrate data from dif-
ferent providers of information.

Many different approaches to integrating access to
these data sources are possible. Often, integration
is provided by applications that can talk to one of
several data sources, depending on the user’s request.
In these systems, the data sources are typically “hard-
wired”; replacing one data source with another
means rewriting a portion of the application. In ad-
dition, data from different sources cannot be com-
pared in response to a single request unless the com-
parison is likewise wired into the application. Moving
all relevant data to a warehouse allows greater flex-
ibility in retrieving and comparing data, but at the
cost of reimplementing or losing the specialized func-
tions of the original source, as well as the cost of
maintenance. A third approach is to create a homo-
geneous object layer to encapsulate diverse sources.
This encapsulation makes applications easier to
write, and more extensible, but does not solve the
problem of comparing data from multiple sources.

Database middleware systems offer users the ability
to combine data from multiple sources in a single
query, without creating a physical warehouse. By
“wrapping” the actual sources, they provide exten-
sibility and encapsulation as well. Several research
projects6–9 have focused on middleware to bridge
sources of “nonstandard data types” (that is, types
other than the simple strings and numbers stored by
most relational database management systems). Dis-
coveryLink10,11 is an IBM offering that uses database
middleware technology to provide integrated access
to data sources used in the life sciences industry. Dis-
coveryLink provides users with a virtual database to
which they can pose arbitrarily complex queries in
the high-level, nonprocedural query language SQL
(Structured Query Language). DiscoveryLink effi-
ciently answers these queries, even though the nec-
essary data may be scattered across several different
sources, and none of those sources, by itself, is ca-
pable of answering the query. In other words, Dis-
coveryLink can optimize queries and compensate for
SQL function that may be lacking in a data source.
Additionally, queries can exploit the specialized func-
tions of a data source, so that no functionality is lost
in accessing the source through DiscoveryLink.

In this paper, we present an overview of Discovery-
Link and show how it can be used to integrate the
access to life sciences data from heterogeneous data
sources. As motivation, the next section sketches sev-
eral common research scenarios that substantiate the
need for cross-source queries and query optimiza-
tion, and which we will use to illuminate our discus-
sion. In the section on a wrapper architecture, we
describe the DiscoveryLink offering as it exists to-
day. Then in the section on query processing, we walk
through the optimization and execution of a few que-
ries, pointing out the benefits of the database middle-
ware approach and highlighting areas for improve-
ment. The next version of DiscoveryLink will be
enhanced by changes to query optimization follow-
ing the Garlic9 approach. We describe these changes
in the section on future enhancements and illustrate
their effect on the processing of one of our earlier
queries. The section on field experience recounts our
experiences with DiscoveryLink to date, describing
briefly some ongoing functional and performance
studies. In the section on discussion, we reflect on
DiscoveryLink’s overall role in the process of data
integration. In the next section we discuss related
work, and then conclude with a report on current
and future work.
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Motivation

A key feature of DiscoveryLink is that it enables users
to ask queries that span multiple sources of infor-
mation. Such queries arise frequently for research-
ers in the life sciences. Today, a query that spans mul-
tiple sources must be mapped to a series of requests
to two or more separate sources. Either the end user
must figure out the best sequence of requests, sub-
mit them, and then manually intersect the results,
or, if the particular type of request is fairly common,
an application might be written to hide the sequence
of requests. This, however, could require a long and
complex program, while providing only limited flex-
ibility.

In this section, we describe several scenarios in which
scientists must use multiple data sources in order to
get the information they need. We show how the in-
formation could be obtained using DiscoveryLink,
and contrast that with the way it would be obtained
today without the benefit of DiscoveryLink. We re-
fer again to these scenarios (particularly the last one)
in future sections. We start with a description of three
data sources.

Three data sources. To understand the biological
mechanisms of disease and to discover new thera-
pies, researchers need to have access to data from
heterogeneous databases. These databases may in-
clude DNA databases such as GenBank,12 protein da-
tabases such as SWISS-PROT,13 proprietary databases
for storing structural information about compounds,
databases for storing physical properties and activ-
ities of chemical entities, and reference databases
such as MedLine.4 A researcher might wish to ac-
cess and integrate information from some or all of
the above-mentioned databases. For our scenarios,
we assume that the researcher has available a pro-
tein sequence database, a chemical structure data-
base, and a relational database holding assay results.

Each entry in the protein sequence database is in-
dexed by a sequence identifier (protein_id) and con-
tains sequence data, citation information, and tax-
onomic data as well as annotation data that describe
the function of the protein, information about pro-
tein structure, similarities to other proteins, associ-
ated diseases, sequence conflicts, and cross-refer-
ences to other data. We assume that the data also
contain information on the family to which the pro-
tein belongs. All of these data are in text format.

The chemical structure database maintains collec-
tions of molecules with information about their 2-D

chemical structure as well as their physical proper-
ties, including molecular weight and logP values
(logP, the log of the partition coefficient, is an in-
dication of how well the body can use the compound).
This database is indexed on a molecule identifier
(compound_id). This data source can also handle a
similarity query. Given a sample molecule (repre-
sented in a standard format such as a MOLFILE14 or
as a SMILES15 string, similarity queries compute a

score in the range of [0, 1] for every molecule meet-
ing certain criteria, measuring how similar each is
to the sample molecule; the query returns all rele-
vant molecules of a collection ordered by this score.
This kind of query results in ranking molecules of
a collection in the same way as is done for Web pages
in a World Wide Web (WWW) search engine or for
images in an image processing system.

The third database, a relational database such as Or-
acle**, contains information about the assay results.
An example of such a database schema would be Ac-
tivityBase. The main information in this data source
is stored in the “results” table, which details the mol-
ecules that have been tested against a given recep-
tor (a type of protein) and lists their IC50 values,
which are a measure of the binding affinity of the
molecule to the receptor site. Auxiliary tables then
list further details of the experimental conditions.
Each entry in the results table is indexed by a com-
pound key comprised of the molecule and receptor
identifiers.

Scenario 1: A new protein. In this first simple sce-
nario, a biologist at a pharmaceutical company has
a new protein sequence. The biologist wants to find
out if this sequence is already known and, if not
known, find any sequences that are homologous (i.e.,
similar) to the new sequence. The pharmaceutical
company has its own curated copy of the protein da-
tabase in-house. However, our biologist wants to
check the publicly available version to see if there

For our scenarios, we assume
that the researcher has available

a protein sequence database,
a chemical structure database,

and a relational database
holding assay results.
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are any additional data that have not yet made their
way into the in-house version.

To accomplish this, our biologist would run a BLASTP
search using the new sequence against the in-house
version of the database and then do the same with
the public version. After obtaining the result sets
from both versions, the biologist would have to com-
bine the results, eliminating the sequences present
in both (using the protein_id numbers) so as to get
a unique list. However, because the application for
accessing the in-house version might be different
from the Web interface used to access the public ver-
sion, our biologist needs to combine the results by
cutting and pasting, or write an application or script
to perform that task. With DiscoveryLink, the en-
tire task can be carried out as a simple query, re-
lying on the SQL “union” operator to spawn the two
BLASTP searches and to eliminate duplicates in the
result. In this simple scenario, the difference between
writing, say, a Perl script and writing an SQL query
may not seem too great. However, as more sites are
involved, with more interfaces and more choices in
how to actually retrieve the result, the difference be-
tween hand-coding (and hand-optimizing) the script
and writing a nonprocedural statement that is au-
tomatically optimized will become increasingly pro-
nounced.

Of course, these results will no doubt lead to other
queries, across other databases, as the biologist
checks what assays have been done against these ho-
mologous proteins, what compounds were tested,
and so on.

Scenario 2: A merger. After the merger of two phar-
maceutical companies, the discovery informatics
group is tasked to provide easy access to both com-
panies’ chemical structure and assay databases, lo-
cated at two different locations. The databases con-
tain information about chemical compounds that
have been tested, over the years, against various tar-
gets. Merging the databases, which results in a
greater number of active compounds, increases the
likelihood of developing new leads for a particular
therapeutic area. Suppose the researchers are inter-
ested in compounds similar to fluoxetine, also known
as Prozac**. Though the compound_ids in the two
databases are likely to be different, the similarity
search function can be used to query the databases
and extract the required information. For simplic-
ity, we assume that the structures are stored in the
same database format, e.g., either SMILES15 strings

or MOLFILEs.14 If not, a function to convert between
representations would be needed.

Today this problem can be addressed by writing an
application that accesses both chemical structure da-
tabases individually (using a similarity search on each
of the two databases for fluoxetine’s structure) and
puts the two result sets into a common representa-
tion. Then a second pair of queries would be done
against the assay databases to find what targets these
compounds have been screened against. Perhaps the
compounds from company A have been tested
against serotonin receptors, while those from com-
pany B were tested against dopamine receptors. De-
pending on the activities of the set of compounds,
various scenarios emerge: if the activities of com-
pounds from company A are high (low IC50 values)
and activities for the compounds from company B
are low (high IC50 values), it means that this group
of compounds might be selective against the sero-
tonin class of receptors. If the activities of compounds
from both databases are high, it means that this group
of compounds is not selective toward one of these
types of receptors.

In the case of DiscoveryLink, a single query can re-
trieve the similar structures and their matching as-
says from both companies’ databases. Views could
be defined to create a canonical representation of
the data. Furthermore, the query will be optimized
and executed efficiently. DiscoveryLink gives the end
user the perspective of a single data source, saving
effort and frustration.

Again, the story is not likely to end here. Before pro-
posing the synthesis and testing of a newly found
compound, the researcher needs to know the tox-
icity profile of the compound and related compounds
and also the pathways in which the compound or re-
lated compounds might be involved. This would re-
quire gathering information from a (proprietary) tox-
icity database and a database with information on
metabolic pathways, such as KEGG,16 using the struc-
tures and names of the compounds to look up the
data—a potentially difficult set of queries without
the benefit of an engine such as DiscoveryLink.

Scenario 3: Serotonin research. In the brain stem,
the most primitive part of the brain, lie clusters of
serotonin neurons. The nerve fiber terminals of the
serotonin neurons extend throughout the central ner-
vous system from the cerebral cortex to the spinal
cord. This neurotransmitter is responsible for numer-
ous fundamental physiological aspects of the body,
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including control of appetite, sleep, memory and
learning, temperature regulation, mood, behavior
(including sexual and hallucinogenic behavior), car-
diovascular function, muscle contraction, endocrine
regulation, and depression. Serotonin (5-HT, or
5-Hydroxytryptamine) is implicated in a broad range
of disorders like depression, schizophrenia, and Par-
kinson’s disease. Major depression results from a de-
ficiency of available serotonin, or inefficient seroto-
nin receptors. Agents that modulate the processing
of 5-HT by, for example, inhibiting or stimulating
its release, can be useful for treating such diseases.
Prozac, for example, is an agent that inhibits the up-
take of 5-HT back into the nerve terminal. Analysts
project a greater than $10 billion market for sero-
tonin-related drugs in the next decade.

Suppose our scientist, a chemist by background,
wants to see what compounds are active against the
family of serotonin receptors. To do so, the scientist
could ask DiscoveryLink to display the structures of
compounds that scored low in an assay in which the
receptor screened was a member of the serotonin
family. This simple query would in fact require a
three-way “join” of information from all three data
sources. Without DiscoveryLink, the scientist would
need to make (at least) three separate requests: to
the assay database to find the assays with low IC50s;
to the protein family/sequence database to eliminate
those assays where the receptor was not a member
of the family of serotonin receptors; and to the struc-
ture database to retrieve the structures of the com-
pounds tested in the remaining assays. Note that the
second and third steps might, in fact, require mul-
tiple requests, one for each assay returned, unless
the protein and chemical structure sources can both
accept a list of elements to check. In any case, mak-
ing the individual requests and assembling the re-
sults would be a tedious process for the scientist.

Furthermore, there are many possible ways to pro-
cess this query. Instead of starting with the assay da-
tabase, our scientist might start by finding out what
proteins are in the family of serotonin receptors, and
then determine for which of these there were assays
with the right activity. If there are only a few sero-
tonin receptors, and many assays, this would prob-
ably be the best way to go, because it would be
quicker to look up each of the receptors in the fam-
ily to find its assays than to look up, for each assay,
whether its receptor was in the correct family. How-
ever, if not aware of these considerations, the sci-
entist could easily make a mistake, increasing the te-
diousness of the task dramatically. By contrast, since

DiscoveryLink processes the entire request at once,
it can optimize the query, ensuring that the query is
executed efficiently.

Browsing through the results of this query, our sci-
entist recognizes ketanserin, a compound that is
highly selective against the HTR2A class of serotonin
receptors. Our chemist would likely investigate com-
pounds similar to ketanserin to find out whether they
are selective against one particular class of recep-
tor, in which case they might be good drug candi-
dates, or whether they are active against all classes
of the family of serotonin receptors, in which case
they would need to be modified in order to be more
selective. The scientist might ask a query such as:
“Show me compounds with structures similar to ket-
anserin that are active against any members of the
family of serotonin receptors and that have other
drug-like characteristics.” This query again requires
information from all three data sources, and this time
exploits the ability of the chemical structure store to
search by similarity. It would be even harder for the
scientist to determine the best way to perform this
query: whether to look for compounds like ketan-
serin first, or for assays against the family of sero-
tonin receptors, or for the compounds with drug-like
characteristics (appropriate molecular weight, logP
etc.).

In the sections on query processing and future en-
hancements, we return to this scenario and describe
how these two queries would be processed by Dis-
coveryLink.

A wrapper architecture

DiscoveryLink is a fusion of Garlic,9 a federated da-
tabase management system prototype developed by
IBM Research to integrate heterogeneous data, and
DataJoiner*, an IBM federated database manage-
ment product for relational data sources based on
DATABASE 2* Universal Database (DB2 UDB*).17

From the DataJoiner side, DiscoveryLink inherits
proven technology for federating relational data
sources, as well as DB2’s powerful query optimizer
and complete query execution engine. From the Gar-
lic side, DiscoveryLink inherits a modular architec-
ture that facilitates integration of new data sources,
especially data sources that store nontraditional data-
types and embody specialized search algorithms. In
the next two sections, we discuss how this heritage
is embodied in the current version of DiscoveryLink.
This section is devoted to the DiscoveryLink archi-
tecture, and in particular to wrappers, software mod-
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ules that act as intermediaries between data sources
and the DiscoveryLink server. The next section de-
scribes how the DiscoveryLink server uses informa-
tion supplied by wrappers to develop execution plans
for application queries. For illustration we make use
of the three data sources and the query scenario de-
scribed in the section on motivation (Scenario 3).

The overall architecture of DiscoveryLink, shown in
Figure 1, is common to many heterogeneous data-
base systems, including TSIMMIS,8 DISCO,18 Pegasus,6

DIOM,7 HERMES,19 and Garlic.9 Applications connect
to the DiscoveryLink server using any of a variety
of standard database client interfaces, such as Open
Database Connectivity (ODBC) or Java Database
Connectivity (JDBC**), and submit queries to Dis-
coveryLink in standard SQL.20 (The current offering
does not support the INSERT, UPDATE, or
DELETE SQL statements.) The information required
to answer the query comes from one or more data
sources, which have been identified to DiscoveryLink
through a process called registration. Data sources
of interest to the life sciences range from simple data
files to complex domain-specific systems that not only
store data but also incorporate specialized algorithms
for searching or manipulating data. The ability to
use these specialized capabilities must not be lost
when the data are accessed through DiscoveryLink.

When an application submits a query to the Discov-
eryLink server, the server identifies the relevant data

sources and develops a query execution plan for ob-
taining the requested data. The plan typically breaks
the original query into fragments that represent work
to be delegated to individual data sources, plus ad-
ditional processing to be performed by the Discov-
eryLink server to further filter, aggregate, or merge
the data. The ability of the DiscoveryLink server to
further process data received from sources allows
applications to take advantage of the full power of
the SQL language, even if some of the information
they request comes from data sources with little or
no native query processing capability, such as files.

The DiscoveryLink server communicates with a data
source by means of a wrapper,21 a software module
tailored to a particular family of data sources. The
wrapper for a data source is responsible for four
tasks:

1. Mapping the information stored by the data
source into DiscoveryLink’s relational data model

2. Informing DiscoveryLink about the data sources’
query processing capabilities

3. Mapping the query fragments submitted to the
wrapper into requests that can be processed us-
ing the native query language or programming in-
terface of the data source

4. Issuing such requests and, following their execu-
tion, returning results

Figure 1 DiscoveryLink architecture
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From L. M. Haas, P. Kodali, J. E. Rice, P. M. Schwarz, and W. C. Swope, “Integrating Life Sciences Data—with a Little Garlic,”Proceedings of the
IEEE International Symposium on Bio-Informatics and Biomedical Engineering,IEEE, New York (2000);© 2000IEEE, used by permission.
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Because wrappers are the key to extensibility in Dis-
coveryLink, one of our primary goals for the wrap-
per architecture was to enable the implementation
of wrappers for the widest possible variety of data
sources with a minimum of effort. Our experience
with the Garlic prototype has shown that this is fea-
sible. To make the range of data sources that can be
accessed using DiscoveryLink as broad as possible,
we require only that a data (or application) source
have some form of programmatic interface that can
respond to queries and, at a minimum, be able to
return unfiltered data modeled as rows of a table.
The author of a wrapper need not implement a stan-
dard query interface that may be too high-level or
too low-level for the underlying data source. Instead,
a wrapper provides information about a data source’s
query processing capabilities and specialized search
facilities to the DiscoveryLink server, which dynam-
ically determines how much of a given query the data
source is capable of handling. This approach allows
wrappers for simple data sources to be built quickly,
while retaining the ability to exploit the unique query
processing capabilities of nontraditional data sources
such as search engines for chemical structures or im-
ages. Using the Garlic prototype, we validated this
design by wrapping a diverse set of data sources in-
cluding flat files, relational databases, Web sites, and
specialized search engines for images and text.

To make wrapper authoring as simple as possible,
we require only a small set of key services from a
wrapper, and ensure that a wrapper can be written
with very little knowledge of DiscoveryLink’s inter-
nal structure. As a result, the cost of writing a basic
wrapper is small. In our experience, a wrapper that
just makes the data at a new source available to Dis-
coveryLink, without attempting to exploit much of
the data source’s native query processing capability,
can be written in a matter of days. Because the Dis-
coveryLink server can compensate for missing func-
tionality at the data sources, even this sort of simple
wrapper allows applications to apply the full power
of SQL to retrieve the new data and integrate the data
with information from other sources, albeit with per-
haps less than optimal performance. Once a basic
wrapper is written, it can be incrementally improved
to exploit more of the data source’s query process-
ing capability, leading to better performance and in-
creased functionality as specialized search algorithms
or other novel query processing facilities of the data
source are exposed.

A DiscoveryLink wrapper is a C11 program, pack-
aged as a shared library that can be loaded dynam-

ically by the DiscoveryLink server when needed. Typ-
ically, a single wrapper is capable of accessing several
data sources, as long as they share a common or sim-
ilar application programming interface (API). This
is because the wrapper does not encode information
on the schema used in the data source. Thus, sche-
mas can evolve without requiring any change in the
wrapper, as long as the source’s API remains un-
changed. For example, the Oracle wrapper provided
with DiscoveryLink can be used to access any num-
ber of Oracle databases, each having a different
schema. In fact, the same wrapper supports several
Oracle release levels as well.

The process of using a wrapper to access a data
source begins with registration, the means by which
a wrapper is defined to DiscoveryLink and config-
ured to provide access to selected collections of data.
Registration consists of several steps, each taking the
form of an SQL Data Definition Language (DDL)
statement. Several new DDL statements have been
defined for DiscoveryLink, and some existing DDL
statements have been extended. Each registration
statement stores configuration meta-data in system
catalogs maintained by the DiscoveryLink server.

The first step in registration is to define the wrapper
itself and identify the shared library that must be
loaded before the wrapper can be used. A new
CREATE WRAPPER statement has been defined for
this purpose. The wrapper for chemical structures
databases such as the one described in the section
on three data sources might be registered as follows:

CREATE WRAPPER ChemWrapper LIBRARY
'libchemdb.a'

Similar statements would define the wrappers for the
other two data sources.

Note that we have not yet identified particular data
sources, only the software required to access any data
source of these three kinds. The next step of the reg-
istration process is to define specific data sources,
using the CREATE SERVER statement. If several
sources of the same type are to be used, only one
CREATE WRAPPER statement is needed, but a sep-
arate CREATE SERVER would be needed for each
source. For the chemical structures database in our
examples, the statement might be as follows:

CREATE SERVER Chem-HTS WRAPPER ChemWrapper
OPTIONS(NODE 'hts1.bigpharma.com',

PORT '2003', VERSION '3.2b')
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This statement registers a data source that will be
known to DiscoveryLink as “Chem-HTS,” and in-
dicates that it is to be accessed using the previously
registered wrapper “ChemWrapper.” The additional
information specified in the OPTIONS clause is a set
of (option name, option value) pairs that are stored
in the DiscoveryLink catalogs but meaningful only
to the relevant wrapper. In this case, they indicate
to the wrapper that the “Chem-HTS” data source
can be contacted via a particular IP address and port
number, and that it is using version 3.2b of the chem-
ical database software. In general, the set of valid
option names and option values will vary from wrap-
per to wrapper, since different data sources require
different configuration information. Options can be
specified on each of the registration DDL statements,
and provide a simple but powerful form of exten-
sible meta-data. Because options are understood only
by wrappers, only the appropriate wrapper can val-
idate that the option names and values specified on
a registration statement are meaningful and mutu-
ally compatible. As a result, wrappers participate in
each step of the registration process, and may re-
ject, alter, or augment the option information pro-
vided in the registration DDL statement.

The third registration step is to identify, for each data
source, particular collections of data that will be ex-
posed to DiscoveryLink applications as tables. This
is done using the CREATE NICKNAME statement. Col-
lectively, these statements define the schema of each
data source and form the basis of the integrated
schema seen by applications.

In our example, we need three sets of
CREATE NICKNAME statements, one set for each of

the three previously defined data sources. Based on
our previous description of these sources, Figure 2
shows representative CREATE NICKNAME statements
that define partial schemas for each source. (The syn-
tax shown is simplified for purposes of illustration.)
The Protein_Sequence source exports a single re-
lation, Proteins, with columns representing the
unique identifier for a protein, the common (print)
name, the protein family, and a list of diseases with
which the protein has been associated. In real life,
a DBA (database administrator) would likely declare
a fuller set of columns, representing more of the in-
formation contained in the source; we simplify the
schema in the interest of space only. Similarly, the
DBA makes visible a single table, Assays, from the
Oracle source, for which we show only three columns:
the id of the compound being tested, the screen name
identifying the protein (receptor) involved, and an
IC50 value for the test. The IC50 value represents
the concentration of compound required to produce
a 50 percent inhibition of enzyme (protein) activity.
Finally, the chemical structures database exports a
table of compounds along with several important
fields, including the structure, molecular weight, and
logP. Note that the nickname definitions give the
types of attributes in terms of standard SQL datatypes.
This represents a commitment on the part of the
wrapper to translate types used by the data source
to these types as necessary.

Any specialized search capabilities of a data source
are modeled as user-defined functions, and identi-
fying these functions by means of CREATE
FUNCTION MAPPING statements is the fourth step in
registration. Thus the definition of the chemical
structures data source in Figure 2 also includes a

Figure 2 Wrapper schemas

CREATE NICKNAME PROTEINS {
PROTEIN_ID VARCHAR(30) NOT NULL,
NAME VARCHAR(60),
FAMILY VARCHAR(256),
DISEASES VARCHAR(256)

} SERVER PROTEINDB

CREATE NICKNAME ASSAYS {
COMPOUND_ID VARCHAR(10) NOT NULL,
SCREEN_NAME VARCHAR(30) NOT NULL,
IC50 DECIMAL(12,10)

} SERVER ORACLE12

CREATE NICKNAME COMPOUNDS {
COMPOUND_ID VARCHAR(10) NOT NULL,
STRUCTURE LONG VARCHAR,
MOL_WT DECIMAL(10,6),
LOGP DECIMAL(10,2)

} SERVER CHEM-HTS
CREATE FUNCTION MAPPING FOR

SIMILARITY(LONG VARCHAR, LONG VARCHAR)
RETURNS FLOAT
SERVER CHEM-HTS

Molecule Wrapper SchemaAssay Wrapper SchemaProtein–Sequence Wrapper Schema
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CREATE FUNCTION MAPPING statement, registering
that source’s function similarity( A, B). The mapping
identifies this function to the query processor and
declares its signature and return value (in this case,
the similarity score) in terms of standard SQL data-
types. As with nicknames, the wrapper must convert
values of these types to and from the corresponding
types used by the data source.

Once registration is completed, the newly defined
nicknames and functions can be used in queries.
When an application issues a query, the Discovery-
Link server uses the meta-data in the catalogs to de-
termine which data sources hold the requested in-
formation. To break the query into fragments and
develop an optimized execution plan, the Discovery-
Link server must take into account the query pro-
cessing power of each data source. This information
is obtained by requesting a server attributes table (SAT)
from the data source’s wrapper. The SAT contains
a long list of parameters that are set to appropriate
values by the wrapper. For example, if the param-
eter PUSHDOWN is set to “N,” DiscoveryLink will not
request that the data source perform query fragments
more complex than:

SELECT ,column_list. FROM ,nickname.

If PUSHDOWN is set to “Y,” more complex requests
may be generated, depending on the nature of the
query and the values of other SAT parameters. For
example, if the wrapper sets the BASIC_PRED param-
eter to “Y,” requests may include predicates like:

. . . WHERE logP . 4

The parameter MAX_TABS is used to indicate a data
source’s ability to perform joins. If it is set to “1,”
no joins are supported. Otherwise MAX_TABS indi-
cates the maximum number of nicknames that can
appear in the FROM clause of the query fragment to
be sent to the data source.

Information about the cost of query processing by
a data source is supplied to the DiscoveryLink op-
timizer in a similar way, using a fixed set of param-
eters such as CPU_RATIO, the relative speed of the
data source’s processor relative to the one hosting
the DiscoveryLink server. Additional parameters like
average number of instructions per invocation and
average number of I/O operations per invocation can
be provided for data source functions defined to Dis-
coveryLink with function mappings, as can statistics
about tables defined as nicknames. Once defined,

these parameters and statistics can be easily updated
whenever necessary.

This approach is easy for wrapper writers, and has
proven satisfactory for describing the query process-
ing capabilities and costs of simple data sources, and
of the relational database engines supported by the
DataJoiner product. However, it is difficult to extend
this approach to more idiosyncratic data sources.
Web servers, for example, may be able to supply
many pieces of information about some entity, but
frequently will only allow certain attributes to be used
as search criteria. This sort of restriction is difficult
to express using a fixed set of parameters. Similarly,
the cost of executing a query fragment at a data
source may not be easily expressed in terms of fixed
parameters if, for example, the cost depends on the
value of an argument to a function. In the section
on future enhancements, we describe a more flex-
ible approach, pioneered by Garlic, that will be in-
cluded in the next release of DiscoveryLink.

Once the optimizer has chosen a plan for a query,
query fragments are distributed to the data sources
for execution. Each wrapper maps the query frag-
ment it receives into a sequence of operations that
make use of its data source’s native programming
interface and/or query language. Once the plan has
been translated, it can be executed immediately or
saved for later execution. The DiscoveryLink serv-
er’s execution engine is pipelined and employs a fixed
set of functions (Open/Fetch/Close) that each wrap-
per must implement to control the execution of a
query fragment. When accepting parameters from
the server or returning results, the wrapper is respon-
sible for converting values from the data source type
system to DiscoveryLink’s SQL-based type system.

Query processing

In this section, we show how the DiscoveryLink
server creates an optimized execution plan for a
query, drawing on information obtained from wrap-
pers about the query processing capabilities of data
sources and the location and schema of the data
themselves. DiscoveryLink follows a traditional, dy-
namic programming approach to optimization.22

Plans are tree structures with Plan Operators, or
POPs, as nodes. Each POP is characterized by a fixed
set of plan properties. These properties include Cost,
Tables, Columns, and Predicates, where the latter
three keep track of the relations and attributes ac-
cessed and the predicates applied by the plan, re-
spectively. Each POP works on one or more inputs,
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and produces some output (usually a stream of
tuples). The input to a POP may include one or more
streams of tuples produced by other POPs. Discov-
eryLink’s POPs include operators for join, sort, filter
(to apply predicates), temp (to make a temporary
collection), and scan (to retrieve locally stored data).
DiscoveryLink also provides a generic POP, called
Remote Query, which encapsulates work to be done
at a data source.

A plan enumerator is a component of the optimizer
that builds plans for the query bottom-up in three
phases, applying pruning to eliminate inefficient
plans at every step. In the first phase, it creates plans
to access individual relations used in the query. In
the second phase, it iteratively combines these single-
relation plans to create join plans. Finally, the enu-
merator adds any POPs necessary to get complete
query plans. The winning plan is chosen on the basis
of cost. The overall cost is computed by the optimizer
using parameter values and statistics supplied by the
wrappers during registration, taking into account lo-
cal processing costs, communication costs, and the
costs to initiate a subquery to a data source, as well
as the costs of any expensive functions or predi-
cates.23,24

Consider the following example, based on Scenario
3 of the section on motivation. Recall that the first
step in our chemist’s investigation was to look for
compounds that were active against the family of se-
rotonin receptors, to find out whether they were se-
lective against one particular receptor or class of re-
ceptors (in which case they might be good drug
candidates) or whether they were active against all
members of the family of serotonin receptors (in
which case they would need to be modified so as to
be more selective). Seeing the results of the follow-
ing query in a structure-activity relationship (SAR)
table would aid in this analysis:

Show me all the compounds that have been tested
against members of the family of serotonin recep-
tors and have IC50 values in the nanomolar/ml range.

Assuming the scientist wishes to see the structures
of the compounds as well as their identifiers, this
query involves information from all three data
sources described above. Using DiscoveryLink, a sin-
gle query can access these multiple databases and
combine the resulting information. In SQL, using the
wrapper schemas of Figure 2, the above query can
be written as:

SELECT a.compound_id, a.IC50, p.name,
c.structure

FROM Assays a, Proteins p, Compounds c
WHERE a.screen_name 5 p.protein_id

AND a.compound_id 5 c.compound_id
AND p.family LIKE '%serotonin%'
AND a.IC50 , 1E-8

Of course, our scientist is unlikely to write such a
query! Instead, the scientist will probably just fill in
some values for the predicates (maybe by selecting
them from a list of possible values) in a nice GUI
(graphical user interface). Under the covers, the ap-
plication would generate this query and pass it to
DiscoveryLink, which can then parse, optimize, and
execute it.

Optimizing the query. As mentioned above, the op-
timizer examines the query bottom-up, first finding
plans for accessing each of the individual tables, then
finding plans for joining pairs of tables, and, finally,
finding plans for the three-way join. The optimizer
uses information from the wrappers about the speed
of the various sources, their network connections,
and the size and distribution of their data to predict
the costs of the various plans. Using information
about their query capabilities, it ensures that it does
not ask the sources to do anything they cannot do,
and adds any operators it needs to compensate for
function missing in the sources. It may also be able
to rewrite the query in ways that will make query pro-
cessing more efficient.

Figure 3 shows the plans created in the first phase
of optimization for each of the tables. Each plan con-
sists of a single operator, RemoteQuery, but each has
a different set of properties. For example, the first
plan accesses the assay table, applying the predicate
on IC50, and returning the columns needed for the
select list (compound_id, IC50) and to join the As-
say table to the protein table (screen_name). The sec-
ond plan accesses the compound table, returning the
structure for the select list as well as compound_id,
to join the compound table with the assay table. The
third plan accesses Proteins, applying the LIKE pred-
icate at the data source and returning protein_id to
join this table to the assay table. In each case, the
plan chosen reflects information about the data
source’s query capabilities that was supplied to the
optimizer by the source’s wrapper. By setting param-
eter values in the server attribute table appropriately,
the wrapper for the Assay database indicated that
the underlying data source could apply basic pred-
icates. As a result, the optimizer could safely del-
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egate evaluation of the predicate “IC50 , 1E-8” to
the data source. Similarly, the wrapper for the text
data source indicated to the optimizer that the source
could apply LIKE predicates, allowing the opti-
mizer to include the predicate “p.family LIKE
‘%serotonin%’ ” in the access plan for this source.

In the second phase, the optimizer will look at all
pairs of tables and construct multiple plans for join-
ing each pair.25 There will be a plan for each fea-
sible join method (way of executing the join) and for
each possible join order (order in which the tables
are accessed). For simplicity, we assume there are
only two join methods. In the first method, the data
resulting from the plan for the inner table of the join
(the second table accessed) is brought to Discovery-
Link and stored temporarily, so that the join pred-
icate is evaluated in DiscoveryLink. Alternatively,
each join value from the outer table can be sent to
the data source, and both the join and the local pred-
icates can be evaluated at the source, once for each
outer table value. (This latter join method has been
called a bind join. 21) Under these assumptions this
phase would produce eight plans, two for joining As-
says and Compounds in that order, two for joining
them in reverse order, and two for joining Assays
and Proteins in that order, two in the reverse. The
DiscoveryLink optimizer actually has several more
join methods to choose from, and some, such as hash
join, 26 might well lead to better plans than the ones
described here.

Once the two-way joins are built, the optimizer looks
at alternative ways of joining these with the single
table plans for the remaining table. This query re-
quested no additional work (sorting, for example),
so to complete the plans all that is needed is a final
Return operator that eliminates any extra columns,
returning only those needed. Figure 4 shows three
of the many plans the optimizer would create for this
query. In general, the number of plans examined is
exponential in the number of tables being joined. The
first plan starts by finding the structure of every com-
pound, then sees which of them received a low IC50
score in an assay, and, finally, looks up the proteins
they bound to in those assays to see if they are in
the serotonin receptor family. The second plan finds
the assays with low IC50 scores, then finds the struc-
ture of the compound tested in each of those assays,
and finally determines whether the proteins that
these compounds bound to are members of the se-
rotonin receptor family. The third plan starts by find-
ing the proteins that are members of the serotonin
receptor family, finds assays in which some com-

pound bound tightly to them, and finally retrieves
the structures of just those compounds. The first two
plans make a temporary table of the results of the
remote query on Proteins so that they only access
that table once. The first plan probes the Assays ta-
ble in Oracle once for each compound. Likewise, the
third plan asks the chemical structures source to re-
turn the appropriate compound structure once for
each compound_id that generated a low IC50 when
screened with a protein in the serotonin receptor
family.

Which of these plans is best depends on many fac-
tors. Since the first plan begins by retrieving the struc-
ture for every compound in the chemical structures
database, it is unlikely to be good unless there are
very few compounds. The second plan only fetches
structures for those compounds that turn up with a
low IC50 score in one or more assays, which should
be an improvement in most circumstances. Since it
accesses the Protein data source only once, creating
a temporary table at the server, this plan may per-
form well if relatively few proteins are in the sero-
tonin receptor family, the DiscoveryLink server is
fast, and accessing the text data source is slow. The
third plan defers access to the Compounds table un-
til the end, which ensures that only the structures of
compounds that qualify for the final result will be
retrieved, i.e., those that had low IC50 scores in as-
says against relevant proteins. In other respects, this
plan is similar to the second plan and similar argu-
ments apply.

Figure 3 Single table access plans, first phase of
optimization

RemoteQuery

Tables:
Compounds

Columns:
compound_id
structure

Predicates:
(None)

RemoteQuery

Tables:
Proteins

Columns:
protein_id
name

Predicates:
family LIKE
‘%serotonin%’

RemoteQuery

Tables:
Assays

Columns:
compound_id
IC50
screen_name

Predicates:
IC50 < 1E-8

From L. M. Haas, P. Kodali, J. E. Rice, P. M. Schwarz, and W. C. Swope,
“Integrating Life Sciences Data—with a Little Garlic,”Proceedings of
the IEEE International Symposium on Bio-Informatics and Biomedical
Engineering,IEEE, New York (2000);© 2000IEEE, used by permission.
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As this example shows, there are many different plans
possible for even relatively simple queries. Depend-
ing on the data, the selectivity of the predicates, the
complexity of the operations, and the machine and
network speeds, plan costs may vary by orders of
magnitude. A cost-based optimizer is essential to be
able to execute cross-source queries with reasonable
performance.

Executing the query. DiscoveryLink coordinates ex-
ecution of the chosen plan, requesting data from the
wrappers as the plan dictates. To illustrate, we as-
sume that the optimizer has chosen the second plan
of Figure 4 as the best way to execute the query. Plan
2 starts by accessing the Assays table exported by our
Oracle database, applying the predicate on IC50. To
start this process, DiscoveryLink tells the Oracle
wrapper to begin retrieving data for the Remote-
Query operator. The wrapper creates a connection
to the Oracle server, and requests the data it needs.
Since it is talking to a relational engine, this request
is expressed as an SQL query, namely:

SELECT a.compound_id, a.IC50, a.screen_name
FROM ASSAYS a
WHERE a.IC50 , 0.00000001

Those assays that survive the IC50 test are returned
to DiscoveryLink. When DiscoveryLink receives the
first result row, it asks the wrapper for the chemical
structures database to retrieve the structure of the
compound tested. In turn, the wrapper makes a re-
quest to the chemical structures database itself. This
request will likely consist of a call to one of the in-
terface routines supplied by the source, passing in
the compound identifier obtained from the assay
data. The structure data returned by this call is passed
back to DiscoveryLink, which attaches it to the as-
say data. This process is repeated for each qualify-
ing assay, completing the join between Assays and
Compounds. Note that assays for which the tested
compound’s structure is not available in the chem-
ical database will be dropped from the result. If this
is not desired, an outer join could be used to pre-
serve the presence of these assays in the result set.

As soon as the first assay-structure pair is produced
by the first join, DiscoveryLink requests that the Pro-
tein_Sequence wrapper execute its piece of the plan.
As above, the Protein_Sequence wrapper in turn re-
quests data from its source. If the scientist is using
Protein_Sequence over the Web, this request looks
like a query URL (uniform resource locator), and re-

Figure 4 Three plans for the full query
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turns an HTML (HyperText Markup Language) page
(or pages) with the result. The wrapper then parses
each HTML page to retrieve the next set of results.
These results are stored by DiscoveryLink in a local
table, and processing of the final join begins. For each
combined assay-structure record, DiscoveryLink
might scan the local table of protein results, looking
for any whose protein_id matches the screen_name
from the assay. Any matches found meet all the cri-
teria of the query and hence are returned to the user.

In this section, we saw how the optimization capa-
bilities of DiscoveryLink work. In fact, for relational
sources, and many simpler sources, the Server At-
tribute Table plus cost parameters approach provides
excellent results. For other sources, however, which
cannot be neatly characterized by the parameters in
the Server Attribute Table, this approach can lead
to suboptimal results. For example, a source that
could answer some, but not all basic predicates, might
be forced to declare that it could not handle basic
predicates—leading to inefficient plans if all data
must be shipped back to DiscoveryLink before pred-
icates are applied. In the next section, we consider
the second half of Scenario 3, in which our chemist
focuses on compounds structurally similar to ketan-
serin. We show how optimizing this query can ex-
ploit the more advanced query planning technology
that will be included in future versions of Discov-
eryLink.

Future enhancements

DiscoveryLink does not yet fully exploit the technol-
ogy pioneered by its forebears, DataJoiner and Gar-
lic. The process begun with the current version of
DiscoveryLink will be completed with the next ver-
sion, due to be generally available in 2002. Features
to be incorporated from DataJoiner include support
for “long” datatypes (BLOB, CLOB, etc.), the ability
to update information at data sources via SQL state-
ments submitted to DiscoveryLink (including full
transaction management for those data sources that
support external coordination of transactions), the
ability to invoke stored procedures that run at data
sources, and the ability to use DiscoveryLink DDL
statements to create new data collections at data
sources. Other forthcoming features stem from ad-
vanced technology that is being added to the data-
base engine at the heart of DiscoveryLink. This en-
gine is more sophisticated than that of either
DataJoiner or Garlic. Improvements to the database
engine will allow certain queries to be answered us-
ing prematerialized automatic summary tables stored

by DiscoveryLink, with little or no access to the data
sources themselves. Another new feature will allow
DiscoveryLink servers with multiple processors to
access several data sources in parallel within a sin-
gle unit of work.

The improvements listed above are important, but
the subject of this section is a more fundamental
change in the way DiscoveryLink develops optimized
execution plans for queries. To demonstrate the need
for this change, and how query planning will work
in future versions of DiscoveryLink, we return to Sce-
nario 3. After browsing the results of the first query,
the chemist decides to investigate the drug poten-
tial of compounds similar to ketanserin. The chem-
ist would like to see an SAR table containing the fol-
lowing information:

Show me all the compounds that have been tested
against members of the serotonin family of recep-
tors, have IC50 values in the nanomolar/ml range,
a molecular weight between 375 and 425, and a logP
between 4 and 5. Order the results by how similar
the compound tested is to ketanserin.

Like the chemist’s earlier query, this request can be
expressed as a single SQL statement that combines
data from all three data sources:27

SELECT a.compound_id., a.IC50, p.name,
c.mol_wt, c.logP, c.structure,
similarity(c.structure,

:KETANSERIN_MOL) AS rank
FROM Assays a, Proteins p, Compounds c
WHERE a.screen_name 5 p.protein_id

AND a.compound_id 5 c.compound_id
AND p.family LIKE '%serotonin%'
AND a.IC50 , 1E-8
AND c.mol_wt BETWEEN 375 AND 425
AND c.logP BETWEEN 4 AND 5

ORDER BY rank

However, accurately determining the cost of the var-
ious possible plans for this query is more difficult.
In the earlier query, assuming the parameters are
correctly set and the statistics characterizing the size
and distribution of the data are up-to-date, estimat-
ing plan costs and result cardinalities is relatively
straightforward. This query introduces two new prob-
lems. The first is estimating the cost of evaluating
the similarity function. The costing parameters main-
tained in the current version of DiscoveryLink for
a function implemented by a data source include a
cost for the initial invocation and a “per-row” cost
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for each additional invocation. However, the only
way to take the value of a function argument into
account is through a cost adjustment based on the
size of the argument value, in bytes. This is unlikely
to give very accurate results. For example, if differ-
ent similarity calculation algorithms can be used for
different classes of pattern molecules, the cost pa-
rameters must be set to reflect some amalgamation
of all the algorithms. As another example, a BLAST
function asked to do a blastp comparison against a
moderate amount of data will return in seconds,
whereas if asked to do a tblastn comparison against
a large data set it may need hours. A simple case
statement, easily written by the wrapper provider,
could model the differences and allow more sensi-
ble choices of plans. While the costs of such pow-
erful functions can in other cases be hard to predict,
many vendors do, in fact, know quite a bit about the
costs of their functions, because they often model
costs themselves to improve their systems’ perfor-
mance.

The second problem is estimating the cost of order-
ing the compounds returned by similarity. To Dis-
coveryLink, the evaluation of the similarity function
and ordering the result set by the rank value returned
are separate operations. The optimizer first estimates
the cost of executing the similarity function the re-
quired number of times (itself an estimate based on
the selectivity of the other predicates in the query)
and then adds on the estimated cost of a SORT op-
erator (for both the case where the SORT is per-
formed by DiscoveryLink and the case where it is
performed by the data source). In reality, it is quite
possible that the chemical structures data source can
order the result by compound_id “for free” as a by-
product of evaluating the similarity function. How-
ever, the cost for ordering by another attribute, e.g.,
molecular weight, might be quite different, or, the
data source might not be able to order results by that
attribute at all.

The solution to these and many similar problems is
not to define a richer set of parameters for more pre-
cisely modeling data sources’ query processing ca-
pabilities and their costs. Experience with DataJoiner
has shown that even for a modest set of data sources,
all sharing a common relational data model and
query language, the number of parameters required
to capture their idiosyncracies soon becomes unten-
able. The situation will only be exacerbated by the
greater number and kind of data sources anticipated
for DiscoveryLink.

Instead, the solution, validated in the Garlic proto-
type, is to involve the wrappers directly in planning
of individual queries. Instead of attempting to model
the behavior of a data source using a fixed set of pa-
rameters with statically determined values, the Dis-
coveryLink server will request information from the
wrapper about a data source’s ability to process a
specific query fragment. In return, the server will re-
ceive one or more wrapper plans, each describing a
specific portion of the fragment that can be pro-
cessed, along with an estimate for the cost of com-
puting the result and its estimated size.

Consider the query introduced above. During the
first phase of optimization, when single-table access
plans are being considered, the chemical structures
database will receive the following fragment for con-
sideration:28

SELECT c.mol_wt, c.logP, c.structure,
similarity(c.structure,

:KETANSERIN_MOL) AS rank
FROM Compounds c
WHERE c.mol_wt BETWEEN 375 AND 425

AND c.logP BETWEEN 4 AND 5
ORDER BY rank

Let us assume that, in a single operation, the chem-
ical structures database can either apply the pred-
icates on molecular weight and logP, or compute the
similarity and order the results by rank, but not both.
The wrapper might return two wrapper plans for this
fragment. The first would indicate that the data
source could perform the following portion of the
fragment:

SELECT c.mol_wt, c.logP, c.structure,
FROM Compounds c
WHERE c.mol_wt BETWEEN 375 AND 425

AND c.logP BETWEEN 4 AND 5

with an estimated execution cost of 3.2 seconds and
an estimated result size of 500 compounds. To es-
timate the total cost of the query fragment using this
wrapper plan, the DiscoveryLink optimizer would
add to the cost for the wrapper plan the cost of in-
voking the similarity function on each of the 500 com-
pounds returned and sorting the resulting records
by rank.

The second wrapper plan would indicate that the
data source could perform the following portion of
the fragment:
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SELECT c.mol_wt, c.logP, c.structure,
similarity(c.structure,

:KETANSERIN_MOL) AS rank
FROM Compounds c
ORDER BY rank

with an estimated execution cost of 6.4 seconds and
an estimated result size of 300000 compounds (i.e.,
all the compounds in the database, sorted by sim-
ilarity to ketanserin). To compute the total cost in
this case, the optimizer would augment the cost for
the wrapper plan with the cost of using the Discov-
eryLink engine to apply the predicates on molecu-
lar weight and logP to each of the 300000 compounds
returned from the data source. Note that when asked
to produce this plan, the wrapper has the pattern
structure (:KETANSERIN_MOL) available, and can take
its properties into account to obtain the best pos-
sible estimate of how expensive the similarity com-
putation will be. Furthermore, if the result from the
data source is naturally ordered by rank, the wrap-
per’s estimate need not include any additional cost
for sorting.

Wrappers participate in query planning in the same
way during the join enumeration portion of optimi-
zation. In our example, the wrapper might be asked
to consider the following “bind join” query fragment:

SELECT c.mol_wt, c.logP, c.structure,
similarity(c.structure,

:KETANSERIN_MOL) AS rank
FROM Compounds c
WHERE c.mol_wt BETWEEN 375 AND 425

AND c.logP BETWEEN 4 AND 5
AND c.compound_id 5 :H0

ORDER BY rank

This is similar to the single-table access, but in this
case the chemical structures database is being asked
to supply the inner stream for a bind join. For each
compound_id produced by the rest of the query (and
represented above by the host variable :H0), the
chemical structures database is asked to find the
chemical properties of the corresponding compound
and its similarity with respect to ketanserin, and re-
turn them if the properties satisfy the predicates on
molecular weight and logP. If the data source can-
not do lookups by compound_id, the wrapper would
return no wrapper plans at all for this request. If such
lookups are supported, the wrapper would return one
or more plans, as above, and indicate in each one
whether the similarity computation or any of the ad-
ditional predicates would also be evaluated.

Since a wrapper may be asked to consider many
query fragments during the planning of a single
query, it is important that communication with the
wrapper be efficient. This is achieved easily in Dis-
coveryLink, since the shared library that contains a
wrapper’s query planning code is loaded on demand
into the address space of the DiscoveryLink server
process handling the query. The overhead for com-
municating with a wrapper is therefore merely the
cost of a local procedure call.

The improved approach to query planning described
in this section will have many advantages over Dis-
coveryLink’s current methodology. It is both simple
and extremely flexible. Instead of using an ever-ex-
panding set of parameters to invest the Discovery-
Link server with detailed knowledge of each data
source’s capabilities, we let this knowledge reside
where it falls more naturally, in the wrapper for the
source in question, and ask only that the wrapper
respond to specific requests in the context of a spe-
cific query. As the examples above have shown,
sources that only support searches on the values of
certain fields or combinations of fields are easily ac-
commodated, as are sources that can only sort re-
sults under certain circumstances or can only per-
form certain computations in combination with
others. Since a wrapper need only respond to a re-
quest with a single plan, or in some cases no plans
at all, the new approach does not sacrifice the cur-
rent system’s ability to start with a simple wrapper
that evolves to reflect more of the underlying data
source’s query processing power.

This approach to query planning need not place too
much of a burden on the wrapper writer, either. In
Reference 29, we showed that it is possible to pro-
vide a simple default cost model and costing func-
tions, along with a utility to gather and update all
necessary cost parameters. The default model proved
to do an excellent job of modeling simple data
sources, and did a good job of predicting costs even
for sources that could apply quite complex predi-
cates. Reference 29 further showed that even an ap-
proximate cost model dramatically improved the
choice of plans over no information or fixed default
values. We therefore believe that this method of
query planning is not only viable, but necessary. With
this advanced system for optimization, Discovery-
Link will have the ease of extension, flexibility, and
performance required to meet the needs of life sci-
ences applications.
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Field experience

DiscoveryLink is a new offering, and as a result, we
are only beginning to understand how it will be used
in practice. Today, two customer pilots are under-
way. The first focuses on linking chemical informa-
tion with biological information by bringing together
data about the structure of compounds with infor-
mation on assays that have been done using these
compounds. The second pilot is linking chemical, bi-
ological, and bioinformatic data, stored in a com-
bination of (different) relational databases and flat
files. (These pilots and an earlier study with Garlic
were the inspiration for our examples.) In both pi-
lots, the information is geographically distributed,
spanning in one case, the United States, and in the
other, both shores of the Atlantic Ocean. The sche-
mas used to represent the information in both cases
are quite complex, involving 30 or more nicknames,
and requiring complex joins and unions both within
and across sources to assemble information required
for the respective applications. Hence the query pro-
cessing capability of DiscoveryLink is being well
tested by these projects.

Additionally, several vendors of life sciences data
sources are considering offerings which would cou-
ple DiscoveryLink with their sources and with an ap-
plication or an object framework to build a platform
for data integration. These vendors see that the ease
of linking their data to data from other sources will
help to distinguish their offerings from those of oth-
ers in the field. Further, an object layer on top of
DiscoveryLink would make it more attractive to a
broader, not necessarily SQL-savvy audience.

Performance is a key issue for any data management
and retrieval system, and a number of questions arise
for a middleware system such as DiscoveryLink. One
relatively simple question is, what effect will going
through the DiscoveryLink middleware have on the
performance of queries against a single data source?
In other words, if a user were to issue the same query
both through DiscoveryLink and directly to the data
source, what would be the difference in the execu-
tion times?

We have done an initial study on this issue with one
customer, Aventis. In this experiment, we ran a set
of their existing queries against both their produc-
tion database (PrDB) and against a DiscoveryLink in-
stallation configured to access (via the relational
wrapper) the same database. Queries were submit-
ted via their existing Web-based query application,

which was modified to submit queries against either
DiscoveryLink wrapping PrDB, or directly against
PrDB. The application, Web server, PrDB, and Dis-
coveryLink all ran on separate machines: the appli-
cation on a Compaq running Windows NT** 4.0, the
Web server on a second Compaq running Windows
NT 4.0, IIS** (Internet Information Server) 4.0, and
IE (Internet Explorer**) 5.0, PrDB on an Alpha 2100
running Windows NT 4.0, and DiscoveryLink on an
RS/6000* H70 running AIX*. Pushdown was enabled,
so DiscoveryLink could choose to use as much or as
little of PrDB’s processing power as it saw fit. Two
experiments were done, a functional test and a load
test.

In the functional test, virtual users (simulated via
Web-based testing software) ran scripts consisting
of a sequence of steps. In each script, the virtual user
would log on to a Web-based application, and run
a sequence of two to four queries, then log off of the
application. Each script was run 20 times before pro-
ceeding to the next, and all tests against PrDB were
completed before testing against DiscoveryLink be-
gan. (Hence both systems had the opportunity to
benefit from any buffering possible.) Tests were run
during quiet hours, but the network was not isolated
during testing. Total transaction time was measured
for each run of each script, and averaged over the
20 runs. In addition, the query results were tested
to verify that correct answers were being returned.
No errors were found. In all, nine different scripts
were run. Queries ranged from selections against a
single table to four-way joins, usually including a mix-
ture of inner and outer joins. Many had subqueries,
some of which were unions of simpler queries. Both
the number of fields selected and the number of
predicates varied greatly in number, and often in-
volved complex functions. The amount of data re-
turned also varied from query to query, though none
retrieved huge numbers of results. Perhaps most im-
portant, each script was representative of the way
scientists at Aventis typically use the system to search
for studies, protocols, compounds, and/or libraries.

Results of the functional test are shown in Table 1.
All times are in seconds. In general, transactions
against DiscoveryLink performed comparably to
transactions directly against PrDB. In some cases, Dis-
coveryLink was, on average, a few seconds slower,
in others a few seconds faster. In one case, for script
number four, the transactions through Discovery-
Link were substantially faster than those directly
against PrDB.30 In all, we concluded that at least for
Aventis’s standard sorts of transactions there was no
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performance penalty for using the DiscoveryLink
middleware.

The load test evaluated the robustness of Discovery-
Link as the number of simultaneous users was in-
creased. Scalability is essential for any database sys-
tem, but especially so for database middleware,
because requests that might originally have been sub-
mitted to multiple independent systems may all be
routed through the middleware instead. (For exam-
ple, an application that previously had to submit sep-
arate requests to the ADME [absorption, distribution,
metabolism, and excretion] and high throughput
screening databases can now send both to Discov-
eryLink, so DiscoveryLink will see a higher number
of requests than any one underlying data source.)
The load tests used scripts similar to those used to
run the functional test, and were driven by the same
testing software. Several different scenarios were run.
In one, all virtual users ran the same script, while in
another, half of the virtual users ran one script and
half another. In the final scenario, the virtual users
were divided into five groups, each of which ran a
different script. Each scenario was run for 20 min-
utes starting with one virtual user and quickly build-
ing to 20. Experiments with greater maximum loads
(40 and 60 virtual users) were also run, but high stan-
dard deviations and large numbers of errors from
other components of the system rendered the mea-
surements less reliable.

The results of the load test can be found in Table
2. Again, we measured the total transaction times
from start to end of script, and took the average over
all executions for all virtual users. Times are again
shown in seconds. In general, results were not sig-
nificantly different between the two application con-
figurations (direct against PrDB and direct against
DiscoveryLink). The DiscoveryLink configuration
performed better on both scripts in the two-script
scenario, and worse for the five-script scenario,
though the variability of the results for this latter case
makes conclusions hard to draw. What is clear is that
at 20 users, there was no significant difference be-
tween the configurations (again, DiscoveryLink is not
adding overhead), and response times for both con-
figurations are comparable to those when only a sin-
gle user is running (i.e., both configurations scaled
well).

So far, we have only discussed queries against a sin-
gle data source. What about the cross-source que-
ries for which DiscoveryLink is intended? We are
working with Aventis to develop a benchmark for

these as well, in which we will compare the perfor-
mance of cross-source queries against DiscoveryLink
with that of an application asking multiple queries
of distinct sources and then assembling the results.
In the meantime, we rely on studies with Garlic and
DB2 DataJoiner, the two key components of Discov-
eryLink. In Reference 31, Daimler-Benz compared
the performance of three state-of-the-art middleware
systems to determine the best platform for a new ap-
plication that needed to combine data from multi-
ple database systems. Their benchmark covered a
broad range of workloads, including single-user and
multiuser tests with queries ranging from simple se-
lections and projections to complex joins and aggre-
gates. DataJoiner performed well in virtually all tests.
The authors draw particular attention to the join
tests, in which DataJoiner’s performance was up to
60000 percent better than the competition’s, con-
cluding that “since the integration of heterogeneous
schemas is mainly done by means of join operations,
a well-designed query optimizer plays a kernel role
in the solution to the heterogeneity problem because
it greatly influences the performance.”

Experiments using the Garlic research prototype in-
dicate that query optimization is important for cross-
source queries even when the sources are nonrela-

Table 1 Results of the functional tests on DiscoveryLink

Script PrDB DiscoveryLink

Avg. RT Std. Dev. Avg. RT Std. Dev.

1 39.95 0.96 40.27 0.85
2 66.98 3.12 64.48 2.57
3 33.08 2.17 31.59 2.03
4 53.10 4.00 43.44 2.78
5 32.57 2.07 31.45 1.46
6 33.72 1.97 33.78 1.72
7 33.67 0.64 34.22 2.69
8 36.92 4.84 42.47 7.04
9 32.84 2.78 32.46 2.25

Table 2 Results of the load tests on DiscoveryLink

Scenario 20 Users

PrDB DiscoveryLink

Avg. StdD Avg. StdD

Single script 39.4 1.6 40.2 1.6
Script 1 of 2 44.7 3.5 37.1 2.9
Script 2 of 2 49.0 3.4 41.0 3.4
Five scripts 46.4 12.2 53.3 8.6
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tional and highly heterogeneous. The Garlic-style
optimizer provides the flexibility needed to choose
good quality plans under these circumstances.32 A
follow-up study29 showed that an accurate cost model
is essential, hence the need to adopt the new query
planning interface outlined in the section on query
processing.

To summarize, today we can state with a fair amount
of confidence that the use of DiscoveryLink will not
introduce significant overhead for queries accessing
a single data source, and that DiscoveryLink will per-
form well even under significant loads. Further, we
have reason to believe, from both the DataJoiner
and the Garlic studies, that performance on cross-
source queries will be good: as long as good plans
exist, DiscoveryLink should find them. We expect
to have further confirmation of this from our cur-
rent pilot projects, which are using DiscoveryLink
in a variety of interesting ways as infrastructure for
scientific research in the life sciences.

Discussion

From the preceding pages, we hope it is clear that
DiscoveryLink can play a useful role in integrating
access to life science data. Yet DiscoveryLink is not
magic; a completely integrated information space re-
quires significant additional work. In particular, Dis-
coveryLink does not solve the problems of semantic
data integration. In many, if not most, research labs,
similar or related information is often modeled dif-
ferently in different data sources. The discrepancies
may range from simple formatting differences (one
data source uses uppercase, another lower), to dif-
ferences in vocabulary (one source refers to Tyle-
nol**, another to Acetaminophen). Common keys
may not exist between sources because objects were
identified differently by different data providers.

While DiscoveryLink does not eliminate the prob-
lems caused by semantic conflicts, it does offer some
facilities that can be used to hide conflicts or trans-
late between representations. By writing queries, for
example, that explicitly call translation functions, or
that join in a translation table or data dictionary,
many conflicts can be resolved. In the examples
above, an uppercase function could be used to al-
low the formatting difference to be bridged, and a
join to a lexicon would eliminate the terminology
problem. A DBA might have to build a translation
table to map between different keys in different
sources; DiscoveryLink offers a place to store the ta-
ble and the ability to use it in queries across these

sources. Such approaches “solve” semantic problems
at the expense of query processing time, but do not
require converting and rebuilding entire databases.
The task of reconciling the differences by writing ap-
propriate queries and translation tables or functions
is, however, left to the DBA or application program-
mers. DiscoveryLink merely provides the capability.

Another characteristic of life sciences data and re-
search environments is frequent change. Data are
being constantly accumulated, with volumes increas-
ing rapidly. As more data of a particular type are
acquired, and better understood, schemas change to
reflect the new knowledge. Further, new sources of
information are always appearing as new technol-
ogies and informatics companies evolve. In such an
environment, flexibility is essential.

DiscoveryLink has been designed with that goal in
mind. The powerful query processor and nonpro-
cedural SQL interface protect applications (to the ex-
tent possible) from changes in the underlying data
source, due to the principle of logical data indepen-
dence. Often a new source of information can be
added simply by registering it and adjusting a view
definition to include it. Changes in interfaces can of-
ten be hidden from the application by modifying the
translation portion of the wrapper, or installing a new
wrapper with the new version of the source. The
query processing technology is built to handle com-
plex queries, and to scale to terabytes of data. Hence
the database middleware concept itself contributes
to dealing well with change.

Further, the wrapper architecture has been designed
for extensibility. Only a small number of functions
need to be written to create a working wrapper. Sim-
ple sources can be wrapped quickly, in a week or two;
more complex sources may require from a few weeks
to a few months to completely model, but even for
these a working wrapper with perhaps limited func-
tionality can be completed quickly. Templates are
provided for each function today, and default cost
modeling code will be provided for the next version.
Wrappers are built so as to enable as much sharing
of code as possible, so that one wrapper can be writ-
ten to handle multiple versions of a data source, and
so that wrappers for similar sources can build on ex-
isting wrappers. The ability to separate schema in-
formation from wrapper code means that changes
in the schema of a data source need not require code
changes in the wrappers. The addition of a new data
source requires no change to any existing wrappers.
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Thus the wrappers also help the system adapt to the
many changes possible in the environment.

While not a complete solution to all heterogeneous
data source woes, DiscoveryLink is well-suited to the
life sciences environment. It serves as a platform for
data integration, allowing complex cross-source que-
ries and optimizing them for high performance. In
addition, several of its features can help in the res-
olution of semantic discrepancies, providing mech-
anisms DBAs can use to bridge the gaps between data
representations. Finally, the high-level SQL interface
and the flexibility and careful design of the wrapper
architecture make it easy to accommodate the many
types of change prevalent in this environment.

Related work

Most data retrieval systems in the life science indus-
try today are point solutions, “solving” the problem
of searching or managing one particular type of data.
Each domain in the life science industry has its own
complicated data types and database formats. For
example, in the cheminformatics domain, there are
approximately 30 different formats for storing struc-
tural information for molecules. The problem is
made even more complex by the diversity of data-
base schemas and sources for chemical inventory,
compound registry, compound properties, assay pro-
tocols, and synthesis protocols. Point solutions in the
cheminformatics domain include algorithms for
searching the databases for structures (e.g., MDL33

and Daylight34), solutions for calculating compound
properties,35,36 and applications to study interactions
of small molecules with macromolecules such as pro-
teins.37,38 Similarly in bioinformatics/genomics, the
number of data types and data sources is very
broad.39 While these solutions enable many appli-
cations that would otherwise not be possible, they
also create islands of data that the end user is forced
to address. By allowing integration of these heter-
ogeneous solutions, DiscoveryLink provides a means
of bridging the data islands they create.

Other vendors are trying to integrate data from a
specific domain—a huge problem in and of itself.
Many of these vendors have well-established prod-
ucts in a particular domain. For example, MSI40 and
Oxford Molecular41 provide products that integrate
several related data sources. Genomica Corpora-
tion’s42 tools combine clinical, epidemiology, genetic,
molecular biology, and biochemistry applications
into a single software environment that spans a num-
ber of domains, enabling scientists to accelerate ge-

netic discoveries and pharmacogenomics. The
Genomica Reference Database (RDB) centralizes
public domain mapping data from worldwide ge-

nome centers. All of these systems integrate specific
data sources rather than providing a general frame-
work for data integration as DiscoveryLink does.

More general work on integrating heterogeneous
data sources for the life sciences domain includes
Kleisli, 43 OPM,44 TAMBIS,45 and SRS.46 Kleisli’s CPL
language allows the expression of complicated trans-
formations across heterogeneous data sources, but
its procedural nature makes optimization difficult.
CPL is geared toward biomedical sources, while SQL
(used by DiscoveryLink) is more general purpose.
OPM has a more flexible object model than Discov-
eryLink, but its multidatabase query processor has
a less powerful optimization capability. TAMBIS has
concentrated more on the benefits of providing a
source-independent ontology of bioinformatics con-
cepts and less on the details of efficient cross-source
query processing.

SRS47 (Sequence Retrieval System) is an indexed flat-
file system, built on the model of a document retrieval
system. The data files contain structured text, labeled
with identifiable field names, e.g., author, keyword,
organism, etc. Fields are parsed and an index is built
for each field. The user can query the data set using
the parsed terms (keywords, author name, etc.) in
Boolean combination. There are in excess of 500–
600 independent sequence-related data sets avail-
able in the public domain, each in a slightly differ-
ent format that research scientists would like to
access. SRS has created a parser that, with a modest
amount of work, can be configured to parse a new
data set and develop queriable indexes to it, and has
systematically indexed a large number of these re-
sources. Furthermore, SRS combines the indexes in
a system that allows cross-database queries, simply
executing the same query against all of the indexed
data sets, sequentially, and reporting all of the re-
sults. This simple model is reasonably effective be-

DiscoveryLink serves as a
platform for data integration,

allowing complex cross-source
queries and optimizing these

for high performance.
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cause there is a strong overlap in the field names and
content of the various data sets. However, this sys-
tem does not extend readily to data types other than
sequences, and, even for sequence data, does not
provide the rich query capability of SQL nor the op-
timization capability of DiscoveryLink. Discovery-
Link could be used by SRS as a richer means of in-
tegrating the various sources, or DiscoveryLink could
wrap SRS as a single source of sequence data.

Solutions such as SYNERGY**48 and Tripos**49 pro-
vide useful access to diverse life sciences data sources
and analysis applications through a domain neutral
object framework. SYNERGY has been constructed
as a network of object-based components built on
Java** and CORBA** (Common Object Request
Broker Architecture**) technologies, while Tripos
relies on CORBA for its distributed framework, or
MetaLayer. As with DiscoveryLink, both SYNERGY
and Tripos can integrate heterogeneous data sources
and programs, and have no built-in data types or
analyses. Instead, the kinds of data upon which the
framework can operate and the analyses available
for these data types are discovered by the program
at run time. However, these systems’ focus is on
building applications from objects rather than on
queries and query optimization. As a result, this type
of object layer is complementary to the Discovery-
Link technology, and when used in conjunction with
it can provide a powerful solution.

Other solutions including SeqStore**,50 Gene
Expression Datamart48 and those provided by In-
cyte,51 have taken a data warehousing or data mart
approach to provide fast access to preintegrated data
(a data mart is a “small” warehouse designed to sup-
port a specific activity). From a performance per-
spective, we believe the optimization technology for
federated data sources described here makes the rep-
lication of data and consequent maintenance unnec-
essary for most applications. Nevertheless, there are
situations in which, because of semantic incompat-
ibilities or slow networks, it is preferable to ware-
house some of the data and then join this warehouse
with other sources using a federated system such as
DiscoveryLink.

Compared to other database middleware systems
such as TSIMMIS,8 DISCO,18 Pegasus,6 DIOM,7 and
HERMES,19 DiscoveryLink is unique in supporting the
full SQL3 language across diverse sources. Because
these systems are all research prototypes, they have
not yet focused on the features needed to make a
system industrial strength. Nimble Technology’s

Nimble Integration Suite52 is an XML (Extensible
Markup Language)-based integration product that
uses XML-QL53 as the integration language. Although
also based on advanced database research (from the
University of Washington), this technology is rela-
tively new and unproven compared to relational
query processing. Other commercial database
middleware systems provide query across multiple
relational sources (for example, DataJoiner54 from
IBM and similar products from Oracle,55 and Sy-
base56). DiscoveryLink is unique among these sys-
tems in its support for writing new wrappers, its ca-
pability to create wrappers for nonrelational sources,
its capability to add new sources dynamically, and,
with the exception of DataJoiner, in its optimization
capabilities.

Status and future work

In this paper we have described IBM’s DiscoveryLink
offering. DiscoveryLink allows users to query data
that may be physically stored in many disparate, spe-
cialized data stores as if all those data were colocated
in a single virtual database. Queries against these
data may exploit all of the power of SQL, regardless
of how much or how little SQL function the various
data sources provide. In addition, queries may em-
ploy any additional functionality provided by indi-
vidual data stores, allowing users the best of both
the SQL and the specialized data source worlds. A
sophisticated query optimization facility ensures that
the query is executed as efficiently as possible. This
optimizer will become even more discerning in the
next version of DiscoveryLink. We have offered ev-
idence that often DiscoveryLink does not add sig-
nificant overhead to single-source queries, and we
have summarized work showing that the optimizer
technologies of both the current and the future ver-
sions are necessary and are capable of choosing good
query execution plans.

DiscoveryLink is a new offering, but it is based on
a fusion of well-tested technologies such as DB2 UDB,
DB2 DataJoiner, and the Garlic research project.
Both DB2 UDB (originally DB2 C/S) and DB2 Data-
Joiner have been available as products since the early
1990s, and have been used by thousands of custom-
ers over the past decade. The Garlic project began
in 1994, and much of its technology was developed
as the result of joint studies with customers, includ-
ing an early study with Merck Pharmaceuticals. Dis-
coveryLink’s extensible wrapper architecture and the
forthcoming version of the optimizer derive from
Garlic. As part of Garlic, we successfully built and
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queried wrappers for a diverse set of data sources,
including two relational database systems (DB2 and
Oracle), a patent server stored in Lotus Notes**,
searchable sites on the World Wide Web (including
a database of business listings and a hotel guide),
and specialized search engines for collections of im-
ages, chemical structures, and text.

Currently, we are working on building up a portfo-
lio of wrappers specific to the life sciences industry.
In addition to key relational data sources such as Or-
acle and Microsoft’s SQL Server**,57 we are writing
wrappers for common genomic sources such as
SWISS-PROT13 and GenBank,12 chemical structure
sources such as Daylight,34 and general sources of
interest to the industry such as Lotus Notes, Mi-
crosoft Excel**, flat files, and text management sys-
tems. We are also working with key industry ven-
dors to wrap the data sources they supply. While we
will continue to create wrappers as quickly as pos-
sible, we anticipate that most installations will re-
quire one or more new wrappers to be created, due
to the sheer number of data sources that exist, and
the fact that many potential users have their own pro-
prietary sources as well. Hence we are training a staff
of wrapper writers who will be able to build new
wrappers as part of the DiscoveryLink software and
services offering.

Of course, there are plenty of areas in which further
research is needed. For the query engine, key topics
are the exploitation of parallelism to enhance per-
formance, and richer support for modeling of ob-
ject features in foreign data sources. There is also
a need for additional tools and facilities that enhance
the basic DiscoveryLink offering. We have done
some preliminary work on a system for data anno-
tation that provides a rich model of annotations,
while exploiting the DiscoveryLink engine to allow
querying of both annotations and data separately and
in together. We are also building a tool to help users
create mappings between source data and a target,
integrated schema58,59 to ease the burden of view def-
inition and reconciliation of schemas and data that
plagues today’s system administrators. We hope that
as DiscoveryLink matures it will serve as a basis for
more advanced solutions that will use its ability to
integrate access to data from multiple sources to pull
real information out of the oceans of data in which
life sciences researchers are currently drowning.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Oracle Corporation, Eli
Lilly and Co., Sun Microsystems, Inc., Microsoft Corporation, Mc-
Neil Consumer Healthcare, Netgenics, Inc., Tripos Associates,
Inc., Object Management Group, Genetics Computer Group, Inc.,
or Lotus Development Corporation.
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